Publication:
Complex Dynamics of a Discrete-Time Prey–Predator System with Leslie Type: Stability, Bifurcation Analyses and Chaos

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department7559cc70-c73e-4c40-8efa-ab77033a1a13
cris.virtualsource.departmentcfc40236-097c-4dcd-a42f-71aa8ec6654c
cris.virtualsource.department0436aad3-0d13-4def-9feb-a9e2c5c3cd7f
cris.virtualsource.departmentbf9f3a3d-64b7-4b46-8361-1af0b3febd90
cris.virtualsource.orcid7559cc70-c73e-4c40-8efa-ab77033a1a13
cris.virtualsource.orcidcfc40236-097c-4dcd-a42f-71aa8ec6654c
cris.virtualsource.orcid0436aad3-0d13-4def-9feb-a9e2c5c3cd7f
cris.virtualsource.orcidbf9f3a3d-64b7-4b46-8361-1af0b3febd90
dc.contributor.authorPinar Baydemir
dc.contributor.authorHuseyin Merdan
dc.contributor.authorEsra Karaoglu
dc.contributor.authorGokce Sucu
dc.date.accessioned2024-07-11T06:56:59Z
dc.date.available2024-07-11T06:56:59Z
dc.date.issued2020-08
dc.description.abstract<jats:p> Dynamic behavior of a discrete-time prey–predator system with Leslie type is analyzed. The discrete mathematical model was obtained by applying the forward Euler scheme to its continuous-time counterpart. First, the local stability conditions of equilibrium point of this system are determined. Then, the conditions of existence for flip bifurcation and Neimark–Sacker bifurcation arising from this positive equilibrium point are investigated. More specifically, by choosing integral step size as a bifurcation parameter, these bifurcations are driven via center manifold theorem and normal form theory. Finally, numerical simulations are performed to support and extend the theoretical results. Analytical results show that an integral step size has a significant role on the dynamics of a discrete system. Numerical simulations support that enlarging the integral step size causes chaotic behavior. </jats:p>
dc.identifier.doi10.1142/S0218127420501497
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1938
dc.publisherWorld Scientific Pub Co Pte Lt
dc.relation.ispartofInternational Journal of Bifurcation and Chaos
dc.relation.issn0218-1274
dc.titleComplex Dynamics of a Discrete-Time Prey–Predator System with Leslie Type: Stability, Bifurcation Analyses and Chaos
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue10
oaire.citation.volume30

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections