Publication:
Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn–Hilliard Equation

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department0e22925a-85e3-4a31-9876-0b43b193f593
cris.virtualsource.department18ca7ee4-791f-41aa-8576-66e10430f6ce
cris.virtualsource.department86a98a5c-5e54-4a5a-a5e8-f37672d69d7b
cris.virtualsource.orcid0e22925a-85e3-4a31-9876-0b43b193f593
cris.virtualsource.orcid18ca7ee4-791f-41aa-8576-66e10430f6ce
cris.virtualsource.orcid86a98a5c-5e54-4a5a-a5e8-f37672d69d7b
dc.contributor.authorAyşe Sarıaydın-Filibelioğlu
dc.contributor.authorBülent Karasözen
dc.contributor.authorMurat Uzunca
dc.date.accessioned2024-05-24T08:14:37Z
dc.date.available2024-05-24T08:14:37Z
dc.date.issued2017-07-14
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>An energy stable conservative method is developed for the Cahn–Hilliard (CH) equation with the degenerate mobility. The CH equation is discretized in space with the mass conserving symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting semi-discrete nonlinear system of ordinary differential equations are solved in time by the unconditionally energy stable average vector field (AVF) method. We prove that the AVF method preserves the energy decreasing property of the fully discretized CH equation. Numerical results for the quartic double-well and the logarithmic potential functions with constant and degenerate mobility confirm the theoretical convergence rates, accuracy and the performance of the proposed approach.</jats:p>
dc.identifier.doi10.1515/ijnsns-2016-0024
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/222
dc.publisherWalter de Gruyter GmbH
dc.relation.ispartofInternational Journal of Nonlinear Sciences and Numerical Simulation
dc.relation.issn1565-1339
dc.titleEnergy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn–Hilliard Equation
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue5
oaire.citation.volume18

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: