Publication:
Flight Delay Prediction with Airport Traffic Density Data from an Aviation Risk Management Perspective

No Thumbnail Available

Date

2025-06-28

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Journal Issue

Abstract

Flight delays are significantly important in risk management for the aviation industry, impacting airline operations, passenger satisfaction, and air traffic management. While existing studies primarily focus on weather-related factors in flight delay prediction, this study explores the influence of airport traffic density on delays from an aviation risk management perspective. Using data mining techniques, the study integrates airport traffic and en-route delay datasets from EUROCONTROL to develop predictive models for delay estimation. The methodology follows a structured approach, including data preprocessing, feature engineering, clustering, and predictive modeling using the Random Forest algorithm. The findings indicate that airport traffic density is a critical predictor of delays, alongside seasonal and regional factors. Regression analysis highlights a strong correlation between congestion levels and delay severity, particularly in peak travel periods. The clustering results reveal four distinct delay patterns, reflecting variations in operational disruptions due to equipment failures and adverse weather conditions. The Random Forest model demonstrates high predictive accuracy, with low error rates confirming its robustness for delay estimation. This study contributes to aviation risk management by providing data-driven insights into flight delays and offering strategic decision-making tools for airline and airport operators. The results emphasize the need for proactive delay mitigation strategies, such as improved airspace allocation and enhanced maintenance processes. Future research could extend this approach by incorporating additional delay factors, such as incident-related disruptions, to further enhance predictive capabilities. By integrating operational data and advanced analytics, this study presents a novel framework for improving delay forecasting and optimizing flight operations.

Description

Keywords

Aviation, Flight delays, Predictive modeling, Random forest algorithm, Risk management

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By