Publication:
Effects of Various Preprocessing Techniques to Turkish Text Categorization Using N-Gram Features

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department22498ec0-7f46-4ad0-a84d-cd8ed95293ae
cris.virtualsource.orcid22498ec0-7f46-4ad0-a84d-cd8ed95293ae
dc.contributor.affiliationMiddle East Technical University; Turkish Aeronautical Association; Turk Hava Kurumu University
dc.contributor.authorDeniz, Ayca; Kiziloz, Llakan Ezgi
dc.date.accessioned2024-06-25T11:44:51Z
dc.date.available2024-06-25T11:44:51Z
dc.date.issued2017
dc.description.abstractNatural Language Processing (NLP) is a prominent subject which includes various subcategories such as text classification, error correction, machine translation, etc. Unlike other languages, there are limited number of Turkish NLP studies in literature. In this study, we apply text classification on Turkish documents by using n-gram features. Our algorithm applies different preprocessing techniques, namely, n-gram choice (character level or word level, bigram or trigram models), stemming, and use of punctuation, and then determines the Turkish document's author and genre, and the gender of the author. For this purpose, Naive Bayes, Support Vector Machines and Random Forest are used as classification techniques. Finally, we discuss the effects of above mentioned preprocessing techniques to the performance of Turkish text classification.
dc.description.endpage660
dc.description.pages6
dc.description.researchareasComputer Science
dc.description.startpage655
dc.description.woscategoryComputer Science, Software Engineering; Computer Science, Theory & Methods
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1170
dc.language.isoEnglish
dc.publisherIEEE
dc.relation.journal2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK)
dc.subjectTurkish text classification; n-gram features; supervised machine learning
dc.titleEffects of Various Preprocessing Techniques to Turkish Text Categorization Using N-Gram Features
dc.typeProceedings Paper
dspace.entity.typePublication

Files