Publication:
Operator Representation and Class Transitions in Elementary Cellular Automata

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmente8099d3e-928e-4376-8025-d6f94e596f4e
cris.virtualsource.department55a7e37b-eb7a-4455-8358-b9cfac9d1dbd
cris.virtualsource.departmente39a64a8-a0a1-481b-be3e-9db560fc2844
cris.virtualsource.departmentd4aedaab-dffc-4eb7-9ed3-fb7d82f5e8ad
cris.virtualsource.departmente51da044-13db-4089-88d2-24da3064cdbe
cris.virtualsource.department4fe3c6e6-f2a0-4c0d-911b-a39cdbc17cf1
cris.virtualsource.orcide8099d3e-928e-4376-8025-d6f94e596f4e
cris.virtualsource.orcid55a7e37b-eb7a-4455-8358-b9cfac9d1dbd
cris.virtualsource.orcide39a64a8-a0a1-481b-be3e-9db560fc2844
cris.virtualsource.orcidd4aedaab-dffc-4eb7-9ed3-fb7d82f5e8ad
cris.virtualsource.orcide51da044-13db-4089-88d2-24da3064cdbe
cris.virtualsource.orcid4fe3c6e6-f2a0-4c0d-911b-a39cdbc17cf1
dc.contributor.authorMuhamet Ibrahimi
dc.contributor.authorArda Güçlü
dc.contributor.authorNaide Jahangirov
dc.contributor.authorMecit Yaman
dc.contributor.authorOguz Gülseren
dc.contributor.authorSeymur Jahangirov
dc.date.accessioned2024-05-23T11:26:57Z
dc.date.available2024-05-23T11:26:57Z
dc.date.issued2022-12-15
dc.description.abstract<jats:p>We exploit the mirror and complementary symmetries of elementary cellular automata (ECAs) to rewrite their rules in terms of logical operators. The operator representation based on these fundamental symmetries enables us to construct a periodic table of ECAs that maps all unique rules in clusters of similar asymptotic behavior. We also expand the elementary cellular automaton (ECA) dynamics by introducing a parameter that scales the pace with which operators iterate the system. While tuning this parameter continuously, further emergent behavior in ECAs is unveiled as several rules undergo multiple phase transitions between periodic, chaotic and complex (class 4) behavior. This extension provides an environment for studying class transitions and complex behavior in ECAs. Moreover, the emergence of class 4 structures can potentially enlarge the capacity of many ECA rules for universal computation.</jats:p>
dc.identifier.doi10.25088/ComplexSystems.31.4.415
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/149
dc.publisherWolfram Research, Inc.
dc.relation.ispartofComplex Systems
dc.relation.issn0891-2513
dc.titleOperator Representation and Class Transitions in Elementary Cellular Automata
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue4
oaire.citation.volume31

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
31-4-3.pdf
Size:
700.28 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: