Publication:
Zaman Serisi Veri Kümeleri İçin Olasılığa Dayalı Tahmin Yöntemi

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentdbb24d49-5144-4944-af9d-e122eb75c694
cris.virtualsource.orciddbb24d49-5144-4944-af9d-e122eb75c694
dc.contributor.authorAbdullatif BABA
dc.contributor.authorBaba, Abdullatif
dc.date.accessioned2024-07-10T08:15:34Z
dc.date.available2024-07-10T08:15:34Z
dc.date.issued2023-04-30
dc.description.abstract<jats:p xml:lang="en">In this paper, a new probabilistic technique (a variant of Multiple Model Particle Filter-MMPF) will be used to predict time-series datasets. At first, the reliable performance of our method is proved using a virtual random scenario containing sixty successive days; a large difference between the predicted states and the real corresponding values arises on the second, third, and fourth day. The predicted states that are determined by using our method converge rapidly towards the real values while a classical linear model exhibits a large amount of divergence if used alone here. Then, the performance of our approach is compared with some other techniques that were already applied to the same time-series datasets: IEX (Istanbul Stock Exchange Index), TAIEX (Taiwan Stock Exchange), and ABC (The Australian Beer Consumption). The performance evaluation metrics that are utilized here are the correlation coefficient, the mean absolute percentage error, and the root mean squared error.</jats:p>
dc.identifier.doi10.29130/dubited.1022265
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1828
dc.publisherDuzce Universitesi Bilim ve Teknoloji Dergisi
dc.relation.ispartofDüzce Üniversitesi Bilim ve Teknoloji Dergisi
dc.relation.issn2148-2446
dc.titleZaman Serisi Veri Kümeleri İçin Olasılığa Dayalı Tahmin Yöntemi
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume11
relation.isAuthorOfPublication04f4e747-fbf5-4d44-b00c-a8d04671468e
relation.isAuthorOfPublication.latestForDiscovery04f4e747-fbf5-4d44-b00c-a8d04671468e

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections