Publication:
A comparison of peptide amphiphile nanofiber macromolecular assembly strategies

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department57f843e1-6473-40c2-bac8-bdb0abcf2823
cris.virtualsource.orcid57f843e1-6473-40c2-bac8-bdb0abcf2823
dc.contributor.affiliationStanford University; Turk Hava Kurumu University; Turkish Aeronautical Association
dc.contributor.authorDana, Aykutlu; Tekinay, Ayse B.; Tekin, E. Deniz
dc.contributor.authorTekin, Emine Deniz
dc.date.accessioned2024-06-25T11:44:56Z
dc.date.available2024-06-25T11:44:56Z
dc.date.issued2019
dc.description.abstract.Supramolecular peptide nanofibers that are composed of peptide amphiphile molecules have been widely used for many purposes from biomedical applications to energy conversion. The self-assembly mechanisms of these peptide nanofibers also provide convenient models for understanding the self-assembly mechanisms of various biological supramolecular systems; however, the current theoretical models that explain these mechanisms do not sufficiently explain the experimental results. In this study, we present a new way of modeling these nanofibers that better fits with the experimental data. Molecular dynamics simulations were applied to create model fibers using two different layer models and two different tilt angles. Strikingly, the fibers which were modeled to be tilting the peptide amphiphile molecules and/or tilting the plane were found to be more stable and consistent with the experiments.
dc.description.doi10.1140/epje/i2019-11827-6
dc.description.issue5
dc.description.pages7
dc.description.researchareasChemistry; Materials Science; Physics; Polymer Science
dc.description.urihttp://dx.doi.org/10.1140/epje/i2019-11827-6
dc.description.volume42
dc.description.woscategoryChemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Polymer Science
dc.identifier.issn1292-8941
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1193
dc.language.isoEnglish
dc.publisherSPRINGER
dc.relation.journalEUROPEAN PHYSICAL JOURNAL E
dc.subjectSoft Matter: Self-organisation and Supramolecular Assemblies
dc.subjectMOLECULAR-DYNAMICS SIMULATIONS; HYDRATION; FORCE
dc.titleA comparison of peptide amphiphile nanofiber macromolecular assembly strategies
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicatione0ea5a09-6f00-4c50-a1b0-c329dbd171cf
relation.isAuthorOfPublication.latestForDiscoverye0ea5a09-6f00-4c50-a1b0-c329dbd171cf

Files