Publication: Energy Stable Discontinuous Galerkin Finite Element Method for the Allen–Cahn Equation
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | 0e22925a-85e3-4a31-9876-0b43b193f593 | |
cris.virtualsource.department | 18ca7ee4-791f-41aa-8576-66e10430f6ce | |
cris.virtualsource.department | 94f7bc0d-47e7-4c49-8f76-63addb69e366 | |
cris.virtualsource.department | 431cc8bb-55bc-4b11-a608-4991d66b18bc | |
cris.virtualsource.orcid | 0e22925a-85e3-4a31-9876-0b43b193f593 | |
cris.virtualsource.orcid | 18ca7ee4-791f-41aa-8576-66e10430f6ce | |
cris.virtualsource.orcid | 94f7bc0d-47e7-4c49-8f76-63addb69e366 | |
cris.virtualsource.orcid | 431cc8bb-55bc-4b11-a608-4991d66b18bc | |
dc.contributor.author | Bülent Karasözen | |
dc.contributor.author | Murat Uzunca | |
dc.contributor.author | Ayşe Sariaydin-Fi̇li̇beli̇oğlu | |
dc.contributor.author | Hamdullah Yücel | |
dc.date.accessioned | 2024-05-24T08:07:36Z | |
dc.date.available | 2024-05-24T08:07:36Z | |
dc.date.issued | 2018-04-25 | |
dc.description.abstract | <jats:p> In this paper, we investigate numerical solution of Allen–Cahn equation with constant and degenerate mobility, and with polynomial and logarithmic energy functionals. We discretize the model equation by symmetric interior penalty Galerkin (SIPG) method in space, and by average vector field (AVF) method in time. We show that the energy stable AVF method as the time integrator for gradient systems like the Allen–Cahn equation satisfies the energy decreasing property for fully discrete scheme. Numerical results reveal that the discrete energy decreases monotonically, the phase separation and metastability phenomena can be observed, and the ripening time is detected correctly. </jats:p> | |
dc.identifier.doi | 10.1142/S0219876218500135 | |
dc.identifier.uri | https://acikarsiv.thk.edu.tr/handle/123456789/217 | |
dc.publisher | World Scientific Pub Co Pte Lt | |
dc.relation.ispartof | International Journal of Computational Methods | |
dc.relation.issn | 0219-8762 | |
dc.title | Energy Stable Discontinuous Galerkin Finite Element Method for the Allen–Cahn Equation | |
dc.type | journal-article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 3 | |
oaire.citation.volume | 15 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed to upon submission
- Description: