Publication:
Aerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department30e85e97-20fc-4d7a-9699-2c2ef916c50c
cris.virtualsource.departmentfa0cbde2-bbdb-489e-a816-bb64509a250c
cris.virtualsource.orcid30e85e97-20fc-4d7a-9699-2c2ef916c50c
cris.virtualsource.orcidfa0cbde2-bbdb-489e-a816-bb64509a250c
dc.contributor.authorDurmuş Sinan Körpe
dc.contributor.authorÖztürk Özdemir Kanat
dc.date.accessioned2024-05-24T08:25:15Z
dc.date.available2024-05-24T08:25:15Z
dc.date.issued2019-10-16
dc.description.abstract<jats:p>In this study, the optimization of a low-speed wing with functional constraints is discussed. The aerodynamic analysis tool developed by the coupling of the numerical nonlinear lifting-line method to Xfoil is used to obtain lift and drag coefficients of the baseline wing. The outcomes are compared with the results of the solver based on the nonlinear lifting-line theory implemented into XLFR5 and the transition shear stress transport model implemented into ANSYS-Fluent. The agreement between the results at the low and moderate angle of attack values is observed. The sequential quadratic programming algorithm of the MATLAB optimization toolbox is used for the solution of the constrained optimization problems. Three different optimization problems are solved. In the first problem, the maximization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math> is the objective function, while level flight condition at maximum <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mi>D</mml:mi></mml:mrow></mml:msub></mml:math> is defined as a constraint. The functional constraints related to the wing weight, the wing planform area, and the root bending moment are added to the first optimization problem, and the second optimization problem is constructed. The third optimization problem is obtained by adding the level flight condition and the available power constraints at the maximum speed and the level flight condition at the minimum speed of the baseline unmanned air vehicle to the second problem. It is demonstrated that defining the root bending moment, the wing area, and the available power constraints in the aerodynamic optimization problems leads to more realistic wing planform and airfoil shapes.</jats:p>
dc.identifier.doi10.1155/2019/3050824
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/230
dc.publisherHindawi Limited
dc.relation.ispartofInternational Journal of Aerospace Engineering
dc.relation.issn1687-5966
dc.titleAerodynamic Optimization of a UAV Wing subject to Weight, Geometric, Root Bending Moment, and Performance Constraints
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.volume2019

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
3050824.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
3050824.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: