Publication:
Neural network based instant parameter prediction for wireless sensor network optimization models

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department02a0e531-c685-4d2b-9b76-2a4c1781aad2
cris.virtualsource.orcid02a0e531-c685-4d2b-9b76-2a4c1781aad2
dc.contributor.affiliationTurk Hava Kurumu University; Turkish Aeronautical Association; Ted University; TOBB Ekonomi ve Teknoloji University; TOBB Ekonomi ve Teknoloji University
dc.contributor.authorAkbas, Ayhan; Yildiz, Huseyin Ugur; Ozbayoglu, Ahmet Murat; Tavli, Bulent
dc.date.accessioned2024-06-25T11:45:14Z
dc.date.available2024-06-25T11:45:14Z
dc.date.issued2019
dc.description.abstractOptimal operation configuration of a Wireless Sensor Network (WSN) can be determined by utilizing exact mathematical programming techniques such as Mixed Integer Programming (MIP). However, computational complexities of such techniques are high. As a remedy, learning algorithms such as Neural Networks (NNs) can be utilized to predict the WSN settings with high accuracy with much lower computational cost than the MIP solutions. We focus on predicting network lifetime, transmission power level, and internode distance which are interrelated WSN parameters and are vital for optimal WSN operation. To facilitate an efficient solution for predicting these parameters without explicit optimizations, we built NN based models employing data obtained from an MIP model. The NN based scalable prediction model yields a maximum of 3% error for lifetime, 6% for transmission power level error, and internode distances within an accuracy of 3m in prediction outcomes.
dc.description.doi10.1007/s11276-018-1808-y
dc.description.endpage3418
dc.description.issue6
dc.description.pages14
dc.description.researchareasComputer Science; Engineering; Telecommunications
dc.description.startpage3405
dc.description.urihttp://dx.doi.org/10.1007/s11276-018-1808-y
dc.description.volume25
dc.description.woscategoryComputer Science, Information Systems; Engineering, Electrical & Electronic; Telecommunications
dc.identifier.issn1022-0038
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1255
dc.language.isoEnglish
dc.publisherSPRINGER
dc.relation.journalWIRELESS NETWORKS
dc.subjectWireless sensor networks; Neural networks; Multi-layer perceptron; Backpropagation; Maximum lifetime; Lifetime prediction; Transmission power level; Internode distance
dc.subjectGENETIC ALGORITHM; LIFETIME; CLASSIFICATION; TRANSMISSION; ARCHITECTURE; PROTOCOL
dc.titleNeural network based instant parameter prediction for wireless sensor network optimization models
dc.typeArticle
dspace.entity.typePublication

Files