Publication:
HOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentfc584889-47d5-42fb-9a06-6d2da6132a14
cris.virtualsource.department1418c3e4-064d-46af-b76b-973b745af6e2
cris.virtualsource.orcidfc584889-47d5-42fb-9a06-6d2da6132a14
cris.virtualsource.orcid1418c3e4-064d-46af-b76b-973b745af6e2
dc.contributor.authorE. KARAOGLU
dc.contributor.authorH. MERDAN
dc.date.accessioned2024-07-11T06:58:49Z
dc.date.available2024-07-11T06:58:49Z
dc.date.issued2014-01
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The aim of this paper is to give a detailed analysis of Hopf bifurcation of a ratio-dependent predator–prey system involving two discrete delays. A delay parameter is chosen as the bifurcation parameter for the analysis. Stability of the bifurcating periodic solutions is determined by using the centre manifold theorem and the normal form theory introduced by Hassard et al. Some of the bifurcation properties including the direction, stability and period are given. Finally, our theoretical results are supported by some numerical simulations.</jats:p>
dc.identifier.doi10.1017/S1446181114000054
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1942
dc.publisherCambridge University Press (CUP)
dc.relation.ispartofThe ANZIAM Journal
dc.relation.issn1446-1811
dc.titleHOPF BIFURCATION ANALYSIS FOR A RATIO-DEPENDENT PREDATOR–PREY SYSTEM INVOLVING TWO DELAYS
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue3
oaire.citation.volume55

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections