Publication: Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD
No Thumbnail Available
Date
2012-01-01
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We investigate the structural and electrical properties of AlxIn1exN/AlN/GaN heterostructures with AlGaN
buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer.
The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the
structural and electrical characteristics were studied through variable temperature Hall effect
measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was
observed in two of the suggested AlxIn1 xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to
the standard AlxIn1exN/AlN/GaN heterostructure. This improvement was attributed to better electron
confinement in the channel due to electric field arising from piezoelectric polarization charge at the
Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same inter face. If the growth conditions and design parameters of the AlxIn1 xN HEMT structures with AlGaN
buffers can be modified further, the electron spillover from the GaN channel can be significantly limited
and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be
possible.