Publication:
Predicting the severity of <scp>COVID</scp>‐19 patients using a multi‐threaded evolutionary feature selection algorithm

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentf2849610-b1c4-4c7a-ab0b-b6c026fb514a
cris.virtualsource.department7d177936-1fff-428f-9c1d-047b52592e1e
cris.virtualsource.department63f8b038-0a46-42f2-88ee-5a0c625e3ee0
cris.virtualsource.departmenta12590c2-2543-471e-afb1-b8a792038238
cris.virtualsource.orcidf2849610-b1c4-4c7a-ab0b-b6c026fb514a
cris.virtualsource.orcid7d177936-1fff-428f-9c1d-047b52592e1e
cris.virtualsource.orcid63f8b038-0a46-42f2-88ee-5a0c625e3ee0
cris.virtualsource.orcida12590c2-2543-471e-afb1-b8a792038238
dc.contributor.authorAyça Deniz
dc.contributor.authorHakan Ezgi Kiziloz
dc.contributor.authorEnder Sevinc
dc.contributor.authorTansel Dokeroglu
dc.date.accessioned2024-05-23T11:23:44Z
dc.date.available2024-05-23T11:23:44Z
dc.date.issued2022-02
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>The COVID‐19 pandemic has huge effects on the global community and an extreme burden on health systems. There are more than 185 million confirmed cases and 4 million deaths as of July 2021. Besides, the exponential rise in COVID‐19 cases requires a quick prediction of the patients' severity for better treatment. In this study, we propose a Multi‐threaded Genetic feature selection algorithm combined with Extreme Learning Machines (MG‐ELM) to predict the severity level of the COVID‐19 patients. We conduct a set of experiments on a recently published real‐world dataset. We reprocess the dataset via feature construction to improve the learning performance of the algorithm. Upon comprehensive experiments, we report the most impactful features and symptoms for predicting the patients' severity level. Moreover, we investigate the effects of multi‐threaded implementation with statistical analysis. In order to verify the efficiency of MG‐ELM, we compare our results with traditional and state‐of‐the‐art techniques. The proposed algorithm outperforms other algorithms in terms of prediction accuracy.</jats:p>
dc.identifier.doi10.1111/exsy.12949
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/145
dc.publisherWiley
dc.relation.ispartofExpert Systems
dc.relation.issn0266-4720
dc.titlePredicting the severity of <scp>COVID</scp>‐19 patients using a multi‐threaded evolutionary feature selection algorithm
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue5
oaire.citation.volume39

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Expert Systems - 2022 - Deniz - Predicting the severity of COVID‐19 patients using a multi‐threaded evolutionary feature.pdf
Size:
1.08 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: