Publication:
Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related?

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.departmentc82f2d18-d064-4e66-ae4c-5ccfd2748980
cris.virtualsource.departmentd4604b8c-de60-4ead-a98d-a235a0b5242a
cris.virtualsource.department2155309a-24d0-40de-8d0d-1ff209ea4fa6
cris.virtualsource.departmenta02a8a22-3eaa-41f4-97dd-0039012694a8
cris.virtualsource.department6d64c07d-bc4d-4263-adda-6ce5d75ea19e
cris.virtualsource.department6ace679a-1f31-42ad-b9fe-e6195565b3f2
cris.virtualsource.department023f635d-5700-4a62-9559-00cdc62bf706
cris.virtualsource.department342dc6d7-dcb4-4c84-bd12-b7ebb9fc8191
cris.virtualsource.department708a4a48-dfc6-4a4d-bb11-98c8702fc472
cris.virtualsource.department2d80b23f-8de2-4b51-b96e-af781cd4c290
cris.virtualsource.department4e61126c-5c9d-49eb-ade0-f50f652f88cb
cris.virtualsource.departmenta92048f9-3358-4337-b3ff-71e3a7087f03
cris.virtualsource.departmentb07930d7-effd-40f2-8757-b64575048b59
cris.virtualsource.departmentcb90a001-b9cd-482c-a455-dde941854af1
cris.virtualsource.department5d82933b-2336-4368-844a-c71926c53d67
cris.virtualsource.orcidc82f2d18-d064-4e66-ae4c-5ccfd2748980
cris.virtualsource.orcidd4604b8c-de60-4ead-a98d-a235a0b5242a
cris.virtualsource.orcid2155309a-24d0-40de-8d0d-1ff209ea4fa6
cris.virtualsource.orcida02a8a22-3eaa-41f4-97dd-0039012694a8
cris.virtualsource.orcid6d64c07d-bc4d-4263-adda-6ce5d75ea19e
cris.virtualsource.orcid6ace679a-1f31-42ad-b9fe-e6195565b3f2
cris.virtualsource.orcid023f635d-5700-4a62-9559-00cdc62bf706
cris.virtualsource.orcid342dc6d7-dcb4-4c84-bd12-b7ebb9fc8191
cris.virtualsource.orcid708a4a48-dfc6-4a4d-bb11-98c8702fc472
cris.virtualsource.orcid2d80b23f-8de2-4b51-b96e-af781cd4c290
cris.virtualsource.orcid4e61126c-5c9d-49eb-ade0-f50f652f88cb
cris.virtualsource.orcida92048f9-3358-4337-b3ff-71e3a7087f03
cris.virtualsource.orcidb07930d7-effd-40f2-8757-b64575048b59
cris.virtualsource.orcidcb90a001-b9cd-482c-a455-dde941854af1
cris.virtualsource.orcid5d82933b-2336-4368-844a-c71926c53d67
dc.contributor.authorHamid Latifi-Navid
dc.contributor.authorAmir Barzegar Behrooz
dc.contributor.authorSaleh Jamehdor
dc.contributor.authorMaliheh Davari
dc.contributor.authorMasoud Latifinavid
dc.contributor.authorNarges Zolfaghari
dc.contributor.authorSomayeh Piroozmand
dc.contributor.authorSepideh Taghizadeh
dc.contributor.authorMahsa Bourbour
dc.contributor.authorGolnaz Shemshaki
dc.contributor.authorSaeid Latifi-Navid
dc.contributor.authorSeyed Shahriar Arab
dc.contributor.authorZahra-Soheila Soheili
dc.contributor.authorHamid Ahmadieh
dc.contributor.authorNader Sheibani
dc.date.accessioned2024-05-23T07:11:29Z
dc.date.available2024-05-23T07:11:29Z
dc.date.issued2023-11-02
dc.description.abstract<jats:p>Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer’s disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson’s disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.</jats:p>
dc.identifier.doi10.3390/ph16111555
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/114
dc.publisherMDPI AG
dc.relation.ispartofPharmaceuticals
dc.relation.issn1424-8247
dc.titleConstruction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related?
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue11
oaire.citation.volume16

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
pharmaceuticals-16-01555-v2.pdf
Size:
9.73 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: