Publication: Solar irradiation forecastby deep learning architectures
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.department | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtual.orcid | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
cris.virtualsource.department | 2033eb85-2001-41ef-aea3-32f4f990e867 | |
cris.virtualsource.department | 69e42fc2-7ed8-452a-a8a9-3d591ee89dec | |
cris.virtualsource.department | 32346c74-b2ac-429c-86e0-1874eef7d5ea | |
cris.virtualsource.department | dbd21ed7-3b83-4bb8-92b2-969fb3438532 | |
cris.virtualsource.orcid | 2033eb85-2001-41ef-aea3-32f4f990e867 | |
cris.virtualsource.orcid | 69e42fc2-7ed8-452a-a8a9-3d591ee89dec | |
cris.virtualsource.orcid | 32346c74-b2ac-429c-86e0-1874eef7d5ea | |
cris.virtualsource.orcid | dbd21ed7-3b83-4bb8-92b2-969fb3438532 | |
dc.contributor.author | Omer Dagistanli | |
dc.contributor.author | Hasan Erbay | |
dc.contributor.author | Hasim Yurttakal | |
dc.contributor.author | Hakan Kor | |
dc.date.accessioned | 2024-05-23T11:27:45Z | |
dc.date.available | 2024-05-23T11:27:45Z | |
dc.date.issued | 2022 | |
dc.description.abstract | <jats:p>Global solar irradiation data is a crucial component to measure solar energy potential when we plan, size, and design solar photovoltaic fields. Often, due to the absence of measuring equipment at meteorological stations, data for the place of interest are not available. However, solar irradiation can be estimated by ordinary meteorological data such as humidity, and air temperature. Herein we propose two different deep learning methods, one based on a deep neural network regression and the other based on multivariate long short term memory unit networks, to estimate solar irradiation at given locations. Validation criteria include mean absolute error, mean squared error, and coefficient of determination (R2 value). According to the simulation results, multivariate long short term memory unit networks performs slightly better than deep neural network. Even though both have very close R2 values, multivariate long short term memory?s R2 values are more consistent. The same is true for mean squared error and mean absolute error.</jats:p> | |
dc.identifier.doi | 10.2298/TSCI2204895D | |
dc.identifier.uri | https://acikarsiv.thk.edu.tr/handle/123456789/150 | |
dc.publisher | National Library of Serbia | |
dc.relation.ispartof | Thermal Science | |
dc.relation.issn | 0354-9836 | |
dc.title | Solar irradiation forecastby deep learning architectures | |
dc.type | journal-article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 4 Part A | |
oaire.citation.volume | 26 |