Publication:
Solar irradiation forecastby deep learning architectures

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department2033eb85-2001-41ef-aea3-32f4f990e867
cris.virtualsource.department69e42fc2-7ed8-452a-a8a9-3d591ee89dec
cris.virtualsource.department32346c74-b2ac-429c-86e0-1874eef7d5ea
cris.virtualsource.departmentdbd21ed7-3b83-4bb8-92b2-969fb3438532
cris.virtualsource.orcid2033eb85-2001-41ef-aea3-32f4f990e867
cris.virtualsource.orcid69e42fc2-7ed8-452a-a8a9-3d591ee89dec
cris.virtualsource.orcid32346c74-b2ac-429c-86e0-1874eef7d5ea
cris.virtualsource.orciddbd21ed7-3b83-4bb8-92b2-969fb3438532
dc.contributor.authorOmer Dagistanli
dc.contributor.authorHasan Erbay
dc.contributor.authorHasim Yurttakal
dc.contributor.authorHakan Kor
dc.date.accessioned2024-05-23T11:27:45Z
dc.date.available2024-05-23T11:27:45Z
dc.date.issued2022
dc.description.abstract<jats:p>Global solar irradiation data is a crucial component to measure solar energy potential when we plan, size, and design solar photovoltaic fields. Often, due to the absence of measuring equipment at meteorological stations, data for the place of interest are not available. However, solar irradiation can be estimated by ordinary meteorological data such as humidity, and air temperature. Herein we propose two different deep learning methods, one based on a deep neural network regression and the other based on multivariate long short term memory unit networks, to estimate solar irradiation at given locations. Validation criteria include mean absolute error, mean squared error, and coefficient of determination (R2 value). According to the simulation results, multivariate long short term memory unit networks performs slightly better than deep neural network. Even though both have very close R2 values, multivariate long short term memory?s R2 values are more consistent. The same is true for mean squared error and mean absolute error.</jats:p>
dc.identifier.doi10.2298/TSCI2204895D
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/150
dc.publisherNational Library of Serbia
dc.relation.ispartofThermal Science
dc.relation.issn0354-9836
dc.titleSolar irradiation forecastby deep learning architectures
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue4 Part A
oaire.citation.volume26

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
0354-98362204895D.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: