Publication:
Kähler Magnetic Curves in Conformally Euclidean Schwarzschild Space

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department4f94f6f2-a586-434a-be08-1e826f416ecb
cris.virtualsource.orcid4f94f6f2-a586-434a-be08-1e826f416ecb
dc.contributor.authorÖzgür Kelekçi
dc.contributor.authorKelekçi, Özgür
dc.date.accessioned2024-07-11T07:37:34Z
dc.date.available2024-07-11T07:37:34Z
dc.date.issued2024-03-28
dc.description.abstract<jats:p xml:lang="en">In this paper, we study the magnetic curves on a Kähler manifold which is conformally equivalent to Euclidean Schwarzschild space. We show that Euclidean Schwarzschild space is locally conformally Kähler and transform it into a Kähler space by applying a conformal factor coming from its Lee form. We solve Lorentz equation to find analytical expressions for magnetic curves which are compatible with the almost complex structure of the proposed Kähler manifold. We also calculate the energy of magnetic curves.</jats:p>
dc.identifier.doi10.17776/csj.1400543
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/1977
dc.publisherCumhuriyet University
dc.relation.ispartofCumhuriyet Science Journal
dc.relation.issn2587-2680
dc.titleKähler Magnetic Curves in Conformally Euclidean Schwarzschild Space
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue1
oaire.citation.volume45
relation.isAuthorOfPublication5135d7e4-aaae-449e-b4c5-0f4a8a7fa685
relation.isAuthorOfPublication.latestForDiscovery5135d7e4-aaae-449e-b4c5-0f4a8a7fa685

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections