Publication:
MARCMV: Mining Multi-View Association Rules from Clustered Multi-Views

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department652634d4-87e7-41cf-94df-c1191f9d4bb1
cris.virtualsource.departmentd6203282-b912-4a52-97bc-7de20bcb0cb5
cris.virtualsource.orcid652634d4-87e7-41cf-94df-c1191f9d4bb1
cris.virtualsource.orcidd6203282-b912-4a52-97bc-7de20bcb0cb5
dc.contributor.authorShadi AL SHEHABI
dc.contributor.authorMeltem YILDIRIM IMAMOGLU
dc.contributor.authorİmamoğlu, Meltem Yıldirım
dc.date.accessioned2024-05-23T07:15:32Z
dc.date.available2024-05-23T07:15:32Z
dc.date.issued2023-06-30
dc.description.abstract<jats:p xml:lang="en">Data mining involves examining vast quantities of data to uncover valuable insights that can be utilized for making informed decisions and driving business objectives. The study focuses on the task of finding relationships between features belonging to two different views using multi-view model, and proposes a novel approach called MARCMV. This approach extracts multi-view association rules from different views of the same data set using multi-clustering neural model. The study finds that MARCMV outperforms conventional symbolic methods in terms of association rule quality and running time.</jats:p>
dc.identifier.doi10.22399/ijcesen.1292987
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/118
dc.publisherInternational Journal of Computational and Experimental Science and Engineering (IJCESEN)
dc.relation.ispartofInternational Journal of Computational and Experimental Science and Engineering
dc.relation.issn2149-9144
dc.titleMARCMV: Mining Multi-View Association Rules from Clustered Multi-Views
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume9
relation.isAuthorOfPublication2505acd6-d010-436e-be08-a4c0b5c1a49c
relation.isAuthorOfPublication.latestForDiscovery2505acd6-d010-436e-be08-a4c0b5c1a49c

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10.22399-ijcesen.1292987-3124609.pdf
Size:
908.5 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: