Publication:
A Novel Semantic Content-Based Retrieval System for Hyperspectral Remote Sensing Imagery

cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.department#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.department0d0b4ba1-7507-4ed3-8438-85f6fcb4bfdd
cris.virtualsource.department061d0b5f-04f7-41e8-b992-f976240098ff
cris.virtualsource.department7076998e-3bc6-419c-aba6-ab7fa57b6806
cris.virtualsource.department384f8872-a7b1-4fa7-8d4f-283c6af3a7e6
cris.virtualsource.orcid0d0b4ba1-7507-4ed3-8438-85f6fcb4bfdd
cris.virtualsource.orcid061d0b5f-04f7-41e8-b992-f976240098ff
cris.virtualsource.orcid7076998e-3bc6-419c-aba6-ab7fa57b6806
cris.virtualsource.orcid384f8872-a7b1-4fa7-8d4f-283c6af3a7e6
dc.contributor.authorFatih Ömrüuzun
dc.contributor.authorYasemin Yardımcı Çetin
dc.contributor.authorUğur Murat Leloğlu
dc.contributor.authorBegüm Demir
dc.contributor.authorLeloğlu, Uğur Murat
dc.date.accessioned2024-05-22T14:11:04Z
dc.date.available2024-05-22T14:11:04Z
dc.date.issued2024-04-20
dc.description.abstract<jats:p>With the growing use of hyperspectral remote sensing payloads, there has been a significant increase in the number of hyperspectral remote sensing image archives, leading to a massive amount of collected data. This highlights the need for an efficient content-based hyperspectral image retrieval (CBHIR) system to manage and enable better use of hyperspectral remote-sensing image archives. Conventional CBHIR systems characterize each image by a set of endmembers and then perform image retrieval based on pairwise distance measures. Such an approach significantly increases the computational complexity of the retrieval, mainly when the diversity of materials is high. Those systems also have difficulties in retrieving images containing particular materials with extremely low abundance compared to other materials, which leads to describing image content with inappropriate and/or insufficient spectral features. In this article, a novel CBHIR system to define global hyperspectral image representations based on a semantic approach to differentiate foreground and background image content for different retrieval scenarios is introduced to address these issues. The experiments conducted on a new benchmark archive of multi-label hyperspectral images, which is first introduced in this study, validate the retrieval accuracy and effectiveness of the proposed system. Comparative performance analysis with the state-of-the-art CBHIR systems demonstrates that modeling hyperspectral image content with foreground and background vocabularies has a positive effect on retrieval performance.</jats:p>
dc.identifier.doi10.3390/rs16081462
dc.identifier.urihttps://acikarsiv.thk.edu.tr/handle/123456789/104
dc.publisherMDPI AG
dc.relation.ispartofRemote Sensing
dc.relation.issn2072-4292
dc.titleA Novel Semantic Content-Based Retrieval System for Hyperspectral Remote Sensing Imagery
dc.typejournal-article
dspace.entity.typePublication
oaire.citation.issue8
oaire.citation.volume16
relation.isAuthorOfPublication19c109c7-09a6-4da4-be4c-7336ee2eac0e
relation.isAuthorOfPublication.latestForDiscovery19c109c7-09a6-4da4-be4c-7336ee2eac0e

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
remotesensing-16-01462-v2.pdf
Size:
9.41 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections