Publication: Dynamic Behavior of Advanced Ti Alloy under Impact Loading: Experimental and Numerical Analysis
No Thumbnail Available
Date
2011-08-18
Authors
Murat Demiral
Anish Roy
Vadim Silberschmidt
Journal Title
Journal ISSN
Volume Title
Publisher
Trans Tech Publications, Ltd.
Abstract
<jats:p>Industrial applications of Ti-based alloys, especially in aerospace, marine and offshore industries, have grown significantly over the years primarily due to their high strength, light weight as well as good fatigue and corrosion-resistance properties. A combination of experimental and numerical studies is necessary to predict a material behavior of such alloys under high strain-rate conditions characterized also by a high level of strains accompanied by high temperatures. A Split Hopkinson Pressure Bar (SHPB) technique is a commonly used experimental method to characterize a dynamic stress-strain response of materials at high strain rates. In a SHPB test, the striker bar is shot against the free end of the incident stress bar, which on impact generates a stress pulse propagating in the incident bar towards the specimen sandwiched between the incident and transmitted bars. An experimental study and a numerical analysis based on a three-dimensional finite element model of the SHPB experiment are performed in this study to assess various features of the underlying mechanics of deformation processes of the alloy tested at high-strain and -strain-rate regimes.</jats:p>