Publication:
A novel hybrid teaching-learning-based optimization algorithm for the classification of data by using extreme learning machines

Thumbnail Image

Date

2019-03-22

Authors

ENDER SEVİNÇ
TANSEL DÖKEROĞLU

Journal Title

Journal ISSN

Volume Title

Publisher

The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM) - DIGITAL COMMONS JOURNALS

Research Projects

Organizational Units

Journal Issue

Abstract

<jats:p>Data classification is the process of organizing data by relevant categories. In this way, the data can be understood and used more efficiently by scientists. Numerous studies have been proposed in the literature for the problem of data classification. However, with recently introduced metaheuristics, it has continued to be riveting to revisit this classical problem and investigate the efficiency of new techniques. Teaching-learning-based optimization (TLBO) is a recent metaheuristic that has been reported to be very effective for combinatorial optimization problems. In this study, we propose a novel hybrid TLBO algorithm with extreme learning machines (ELM) for the solution of data classification problems. The proposed algorithm (TLBO-ELM) is tested on a set of UCI benchmark datasets. The performance of TLBO-ELM is observed to be competitive for both binary and multiclass data classification problems compared with state-of-the-art algorithms.</jats:p>

Description

Keywords

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By