Publication: Fuzzy Classification Methods Based Diagnosis of Parkinson’s disease from Speech Test Cases
No Thumbnail Available
Date
2019-11-13
Authors
Niousha Karimi Dastjerd
Onur Can Sert
Tansel Ozyer
Reda Alhajj
Journal Title
Journal ISSN
Volume Title
Publisher
Bentham Science Publishers Ltd.
Abstract
<jats:sec>
<jats:title>Background:</jats:title>
<jats:p>Together with the Alzheimer’s disease, Parkinson’s disease is considTogether with the Alzheimer’s disease, Parkinson’s disease is considered
as one of the two serious known neurodegenerative diseases. Physicians find it hard to
predict whether a given patient has already developed or is expected to develop the Parkinson’s
disease in the future. To overcome this difficulty, it is possible to develop a computing
model, which analyzes the data related to a given patient and predicts with acceptable accuracy
when he/she is anticipated to develop the Parkinson’s disease.ered as one of the
two serious known neurodegenerative diseases. Physicians find it hard to predict whether a given
patient has already developed or is expected to develop the Parkinson’s disease in the future. To
overcome this difficulty, it is possible to develop a computing model, which analyzes the data related
to a given patient and predicts with acceptable accuracy when he/she is anticipated to develop
the Parkinson’s disease. This paper contributes an attractive prediction framework based on some
machine learning approaches. Several fuzzy classifiers have been employed in the process to distinguish
people with Parkinsonism from healthy individuals. The fuzzy classifiers utilized in this
study have been tested using the “Parkinson Speech Dataset with Multiple Types of Sound Recordings
Data Set” available from the UCI repository. The results reported in this paper are better than
the results reported by Sakar et al., where the same dataset was used, but with different classifiers.
This demonstrates the applicability and effectiveness of the fuzzy classifiers used in this study as
compared to the non-fuzzy classifiers used by Sakar et al.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Objectives:</jats:title>
<jats:p>This paper contributes an attractive prediction framework based on some machine
learning approaches for distinguishing people with Parkinsonism from healthy individuals.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Methods:</jats:title>
<jats:p>Several fuzzy classifiers such as Inductive Fuzzy Classifier, Fuzzy Rough Classifier
and two types of neuro-fuzzy classifiers have been employed.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Results:</jats:title>
<jats:p>The fuzzy classifiers utilized in this study have been tested using the “Parkinson
Speech Dataset with Multiple Types of Sound Recordings Data Set” of 40 subjects available
on the UCI repository.</jats:p>
</jats:sec>
<jats:sec>
<jats:title>Conclusion:</jats:title>
<jats:p>The results achieved show that FURIA, MLP- Bagging - SGD, genfis2 and scg1
performed the best among the fuzzy rough, WEKA, adaptive neuro-fuzzy and neuro-fuzzy
classifiers, respectively. The worst performance belongs to nearest neighborhood, IBK, genfis3
and scg3 among the formerly mentioned classifiers. The results reported in this paper are better
in comparison to the results reported in Sakar et al., where the same dataset was used, with utilization
of different classifiers. This demonstrates the applicability and effectiveness of the
fuzzy classifiers used in this study as compared to the non-fuzzy classifiers used by Sakar et al.</jats:p>
</jats:sec>